SYNERGISM OF METHYL BROMIDE TOXICITY AGAINST TERMITES BY ADMIXTURE WITH CARBON DIOXIDE Rudolf H. Scheffrahn, Gregory S. Wheeler, and Nan-Yao Su University of Florida, Ft. Lauderdale Research and Education Center, 3205 College Avenue, Ft. Lauderdale, Florida 33314 The toxicity of methyl bromide in combination with carbon dioxide (CO₂) was assessed in laboratory exposures against pseudergates ("workers") of the southeastern drywood termite, <u>Incisitermes snyderi</u> (Light), and workers of the Formosan subterranean termite, Coptotermes formosanus Shiraki. Estimates of lethal accumulated doses (LAD, 20hour exposure at 27°C) of methyl bromide for 99% mortality against <u>I</u>. <u>snyderi</u> were 50, 37, 28, and 28 mg·h/l at 0, 5, 10, and 20% CO_2 (v/v), respectively. LAD₉₉ values against C. formosanus with methyl bromide were 38, 32, 24, and 24 mg'h/l at 0, 5, 10, and 20 $^{\circ}$ CO₂, respectively (Table 1). general, CO2 enhanced the toxicity of methyl bromide against I. snyderi more than against C. formosanus. Based on LADqq values against I. snyderi, a maximum synergism ratio (SR) of 1.8 was induced by CO_2 in admixture with methyl bromide at 10 or 20% CO_2 . For <u>C</u>. formosanus, the maximum SR at the LAD₉₉ was 1.6 at both 10 and 20% CO_2 . These results indícate that the application rates of methyl bromide can be significantly reduced by the simultaneous addition of 10% CO, into fumigated airspace. The mode of action of low levels (≤ 20 %) of CO₂ as a fumigant synergist is uncertain and probably multidimensional although enhancement of respiration rate plays a likely role. In practical terms, a 10% v/v (176 mg/l) CO2 airspace load would require the addition of about 106 kg of CO₂ to a typical 600 m³ structure. Given a reasonable gas half-loss time of 10 hours, the mean CO2 concentration for a 20 hour fumigation would be about 5.6%. The addition of 2.4 kg (4 mg/l) of methyl bromide under these same conditions would yield an accumulated dose of about 45 mg'h/l (= 45 ounce-hours). Our results indicate that, at an exposure temperature of 27°C, this hypothetical fumigation would be successful for both termite species. Upward adjustments from the 4 mg/l rate would be necessary at lower temperatures, shorter exposure periods, shorter half-loss times (i.e. poor seal), or unusual structural conditions. Likewise, reverse conditions would allow for efficacious rates below 4 mg/l (= 4 ounces/1,000 ft 3). 51 - 2 Table 1. Toxicity $(mg^{\circ}h/1)$ of methyl bromide in admixture with CO_2 against \underline{I} . snyderi and \underline{C} . formosanus after 20-h exposure at 27°C. | Carbon
Dioxide
% (v/v) | | Daya | LAD ₅₀ b
(95% FL) | LAD ₉₅ b
(95% FL) | LAD ₉₉ b
(95% FL) | Synergism Ratios | | | |------------------------------|---------|------|---------------------------------|---------------------------------|---------------------------------|-------------------|-------------------|-------------------| | | n | | | | | LAD ₅₀ | LAD ₉₅ | LAD ₉₉ | | | <u></u> | | | I. snyderi | | | | | | 0 | 120 | 7 | 40.2a
(38.1-41.3) | 47.1a
(45.3-51.9) | 50.3a
(47.5-58.5) | 1.0 | 1.0 | 1.0 | | 5 | 120 | 11 | 24.5b
(23.5-25.8) | 33.0b
(29.8-42.0) | 37.2a
(32.5-52.0) | 1.6 | 1.4 | 1.4 | | 10 | 120 | 7 | 24.5b
(24.1-24.9) | 27.1c
(26.4-28.3) | 28.2b
(27.3-30.0) | 1.6 | 1.7 | 1.8 | | 20 | 120 | 11 | 23.7c
(22.0-23.3) | 26.4c
(25.4-28.2) | 28.1b
(26.6-30.8) | 1.7 | 1.8 | 1.8 | | | | | | C. formosanus | <u> </u> | | | | | 0 | 240 | 8 | 33.1a
(32.6-33.5) | 36.4a
(35.6-37.5) | 37.9a
(36.9-39.5) | 1.0 | 1.0 | 1.0 | | 5 | 240 | 11 | 25.7b
(24.3-27.5) | 30.0a
(27.9-38.1) | 32.0ab
(29.2-44.3) | 1.3 | 1.2 | 1.2 | | 10 | 240 | 10 | 17.7c
(16.7-18.7) | 22.2b
(20.6-26.2) | 24.4b
(22.1-30.5) | 1.9 | 1.6 | 1.6 | | 20 | 240 | 10 | 19.2c
(18.4-20.1) | 22.2b
(21.0-25.5) | 23.6b
(22.0-28.3) | 1.7 | 1.6 | 1.6 | a Day at which latent mortality had ceased. b LAD, lethal accumulated dose (mg·h/liter) values within a column and fumigant followed by the same letter are not significantly different due to 95% FL overlap.